Formalizing C in Coq

Robbert Krebbers

Freek Wiedijk

ICIS, Radboud University Nijmegen, The Netherlands

mail@robbertkrebbers.nl

Abstract

The CH20 project at the RU Nijmegen works towards developing
a Coq formalization of a significant fragment of the C program-
ming language as described by the C11 standard. In this project, we
have developed a (non-deterministic small step) operational and ex-
ecutable semantics of a typed C core language, a type correct trans-
lation of actual C programs into this core language, and extensions
of separation logic to reason about subtle features of C.

In recent work (Krebbers & Wiedijk, 2014), we have turned
the executable semantics into an interpreter. This interpreter, which
is written almost entirely in Coq, can be extracted to OCaml to
explore all defined and undefined behaviors of C programs.

In our CogPL talk, we will describe the internals of our inter-
preter, a standard library for Coq that we have developed, and Coq
features that were essential to the development.

1. Introduction

The C programming language [3] gives close control over the
machine, has a high runtime efficiency, and still is very portable,
making it a very popular programming language. Of course, when
using a low-level language like C, it becomes very easy to make
mistakes with potentially disastrous consequences.

An approach to remedy this situation is to use proofs to estab-
lish the safety of C programs. That way one gets all performance,
control and portability benefits, but without the dangers. Such ap-
proaches range from static analysis (which is by nature incomplete)
to systems where a user can interactively reason about programs.

Still with systems like this, it is often unclear whether it matches
the compiler that is used (or might be used in the future), because
most of these systems are about a version of C that is quite specific.
Moreover, the semantics of C implicit in such a system is generally
not made explicit, making it hard to establish that it is error-free.

For this reason, the CH2O project [4H9] is developing an explicit
formal semantics that should match the official description of C, the
C11 standard [3]], as closely as possible. If one proves something
about a program with respect to the CH>O semantics, it will behave
that way with any C11 compliant compiler. There are two projects
that are very close:

* The CompCert project by Leroy et al. [11] has a formal se-
mantics for a C-like language, called CompCertC, in Coq. It

[Copyright notice will appear here once ’preprint’ option is removed.]

freek@cs.ru.nl

moreover has an optimizing compiler written in Coq that has
been proved correct with respect to this semantics.

* Ellison and Rosu [2] have a formal semantics of C in the K-
framework. They also explicitly model the C11 standard.

In both projects, as well as in ours, there is a formal description of
a significant part of C close to the C11 standard and an executable
interpreter that matches the semantics precisely. However, both
projects also differ from our work:

* Proof infrastructure. Unlike Ellison and Rosu, we have a
proof infrastructure, and establish metatheoretical properties.

* Explicit typing. We have type judgments, and prove properties
of our language like type preservation and progress.

Formal translation from abstract syntax. Unlike CompCert,
we process the abstract syntax of a C program to an intermedi-
ate language inside Coq, and prove that this translation always
yields a well-typed program.

Core language. Unlike Ellison and Rosu, by first going to a
core language, the description of some semantic features (like
loops) becomes more principled and simpler.

Closer to the C11 standard. CompCert makes choices for
implementation defined behavior (e.g. integer representations)
and gives a semantics to various undefined behaviors (such
as aliasing violations). For some programs Ellison and Rosu’s
semantics is less precise than ours (see [4} 15,9} [10]]), because in
our memory model data objects are structured like trees.

2. Exploring the C11 semantics

To be able to test our semantics, we developed an ‘interpreter’ [10],
which does not execute a program according to one interpretation
of the C standard, but rather calculates all behaviors of the program
that are allowed. If the given program has undefined behavior, our
interpreter will explicitly state this undefinedness.

Our interpreter is also different from compilers or interpreters
that insert tests for undefined behaviors as a protection. Those com-
pilers or interpreters generally only follow one possible execution
path. Instead, our interpreter is not primarily meant to be a debug-
ging tool, but instead is an exploration tool, intended to explore the
implications of the C standard [1, [14].

The CH20 interpreter involves 4 passes to get from C source
code to the behavior of the program. These are shown in Figure [T}
and involve two languages:

CH-O core C is quite abstract, and not very close to actual C.
CH-O abstract C is very close to the abstract syntax trees of C.
Metatheoretical results, like properties of the memory model [4],

soundness of separation logic [5} 16} 9], and type preservation and
progress [9] have been proved in Coq with respect to CH2O core C.

2014/10/17

OCaml part

CIL CH20
abstract abstract

Coq part (extracted to OCaml)

syntax syntax

Type
soundness

| CH-20 | Stream of

core ¥ finite sets

syntax of states
...
:
oo, = Soundness and
S -
N : completeness

. -
ey eV ..'O y

.. VT B, N

: : Behaviors :

: Type P owrt i

: judgment : : o

: Juee : : semantics :

Figure 1. Overview of the architecture of the interpreter.

3. Coq formalization

All proofs in the CH20 project have been fully formalized using
Coq and we have used extraction to OCaml to obtain an interpreter
to explore the behavior of C programs. This large Coq development
of ~40.000 lines uses many Coq features.

Our Coq development contains a standard library of ~12.000
lines with results on lists, monads, maps, sets, etc. We have used
type classes to overload notations, and to provide abstract inter-
faces for commonly used structures. This allowed us to prove the-
ory and implement automation in a generic way. Our approach is
inspired by the unbundled approach of Spitters and van der Wee-
gen [13]. However, whereas their work heavily relies on setoids
(types equipped with an equivalence relation), we tried to avoid se-
toids, and have used Leibniz equality wherever possible.

The entire development makes heavy use of finite sets and maps.
Since we had to execute parts of the development, we have imple-
mented these using radix-2 search trees to obtain logarithmic time
operations. These trees are in canonical form to ensure extensional
Leibniz equality of finite sets and maps.

We have also used radix-2 search trees to implement hash maps.
Hash maps are used to filter out duplicates due to converging non-
determinism in the reachable state set of the interpreter. Our hash
maps are parametrized by a hash function that is not required to
satisfy any properties. To this end, we can use the efficient OCaml
standard library function Hashtbl.hash when extracting, and a
less efficient variant in Coq itself.

The development involves a significant amount of monadic pro-
gramming using the option, set, and exception monads. For exam-
ple, the set monad is used to compute all behaviors of a program,
and the exception monad is used to propagate error messages in the
translation from abstract C. Coq’s type class mechanism is used to
overload monadic notations such as the do notation.

We have used type classes to parametrize the whole develop-
ment by an abstract interface that describes implementation defined
properties (such as the sizes and endianness of integers). Our inter-
preter can thus be used to compute the behaviors of programs on
multiple architectures.

In our development, we have heavily combined interactive
proofs with automated proofs. Moreover, we are using tricks like
small inversions [12] to handle inversions of large inductively de-
fined relations.

The Coq development is entirely constructive and axiom free.
All details about the CH20 Coq development can be found online
athttp://robbertkrebbers.nl/research/ch2o/.

References

[1] W. Dietz, P. Li, J. Regehr, and V. S. Adve. Understanding integer
overflow in C/C++. In ICSE, pages 760-770, 2012.

[2] C. Ellison and G. Rosu. An executable formal semantics of C with
applications. In POPL, pages 533-544, 2012.

[3] ISO. ISO/IEC 9899-2011: Programming languages — C. ISO Working
Group 14, 2012.

[4] R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP,
volume 8307 of LNCS, 2013.

[5] R. Krebbers. An Operational and Axiomatic Semantics for Non-
determinism and Sequence Points in C. In POPL, pages 101-112,
2014.

[6] R. Krebbers. Separation algebras for C verification in Coq. In VSTTE,
volume 8471 of LNCS, 2014.

[7] R. Krebbers, X. Leroy, and F. Wiedijk. Formal C semantics: CompCert
and the C standard. In ITP, volume 8558 of LNAI, pages 543-548,
2014.

[8] R. Krebbers and F. Wiedijk. A Formalization of the C99 Standard
in HOL, Isabelle and Coq. In CICM, volume 6824 of LNAI, pages
297-299, 2011.

[9] R. Krebbers and F. Wiedijk. Separation Logic for Non-local Control
Flow and Block Scope Variables. In FoSSaCS, volume 7794 of LNCS,
pages 257-272, 2013.

[10] R. Krebbers and F. Wiedijk. A typed C11 semantics for interactive
theorem proving, 2014. Submitted to CPP, draft available at http://
robbertkrebbers.nl/research/articles/interpreter.pdf.

[11] X. Leroy. Formal verification of a realistic compiler. CACM,
52(7):107-115, 2009.

[12] J. Monin and X. Shi. Handcrafted Inversions Made Operational on
Operational Semantics. In /TP, volume 7998 of LNCS, pages 338—
353,2013.

[13] B. Spitters and E. van der Weegen. Type Classes for Mathemat-
ics in Type Theory. Mathematical Structures in Computer Science,
21(4):795-825, 2011.

[14] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In PLDI, pages 283-294, 2011.

2014/10/17

http://robbertkrebbers.nl/research/ch2o/
http://robbertkrebbers.nl/research/articles/interpreter.pdf
http://robbertkrebbers.nl/research/articles/interpreter.pdf

	Introduction
	Exploring the C11 semantics
	Coq formalization

