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Abstract
We introduce a novel methodology for formally verified
property-based testing and implement it as a framework
on top of the QuickChick testing plugin for Coq.1 Our ver-
ification framework is aimed at proving the correctness
of executable testing code with respect to a high-level
specification, which captures the conjecture under test in
a more direct way. To this end, we provide a systematic
way for reasoning about the set of outcomes a random
data generator can produce with non-zero probability. We
have used our methodology to prove the correctness of
most QuickChick combinators, with respect to the ax-
iomatic semantics of a small number of primitive ones.
We have also applied our methodology on a red-black tree
example and made good progress on a more complex non-
interference one. These encouraging preliminary results
indicate that this verification methodology is modular,
scalable, and requires minimal changes to existing code.

Extended Abstract
While property-based testing is often an effective way
for quickly finding bugs and increasing software qual-
ity, testing errors can conceal important bugs and thus
reduce its benefits. In this work [5] we introduce a novel
methodology for formally verified property-based testing
(Figure 1); this methodology is embodied by a framework
built on top of the QuickChick [3] testing plugin for Coq,
which provides similar functionality to that of Haskell’s
QuickCheck [2].

Similar to QuickCheck, in QuickChick one can write
efficiently executable programs, referred to as checkers,
that express a conjecture about the system under test.
QuickChick then tests the validity of the conjectures by
running the checkers on a large number of randomly gen-
erated inputs. Some data generators are built-in, but the
user can write custom generators using a library of gener-
ator combinators. However, one may wonder, how much
confidence can we have about the program under test
adhering its specifications, when testing cannot find any
more bugs? In fact there are quite a few things that can
tamper with the effectiveness of property-based testing.
A generator may fail to cover the whole input space or

1https://github.com/QuickChick

may only generate only data that fails to satisfy a precon-
dition and thus for which the property holds vacuously.
Checkers may fail to capture the desired high-level speci-
fication, especially when it comes to large systems with
complex invariants.

In this work [5] we propose a new way to gain for-
mal guarantees about the quality of testing by showing
that the conjecture under test corresponds to a high-level
declarative specification. This is enabled by the fact that
all testing code written by the user and the large ma-
jority of QuickChick is written in Coq itself. To make
verification convenient, we devise a mechanism to auto-
matically map both generators and checkers to declarative
semantics. The semantics of each checker is a logical
proposition (Coq sort Prop) that we then prove equivalent
to the high-level declarative specification that we claim
is being tested. The guarantee that this method provides
is that if we could enumerate the output space of the
used generators without producing any counter-examples
then we would have a proof by exhaustion for the desired
declarative specification. While exhaustion is very rarely
possible in practice and would be incompatible with our
randomized testing approach, this theoretical guarantee
ensures that we are testing the correct conjecture. Most
bugs in real generators and checkers are breaking even
this rather weak guarantee.

Generators We reason about each generator in terms
of its set of outcomes, the set of values that have non-zero
probability of being generated (in Coq we represent this
as an Ensemble, a function from α to Prop). We map
most generators in QuickChick and all user generators to
sets of outcomes by giving an axiomatic semantics to a
small set of primitive generator combinators (e.g., return
and bind). Using the set of outcomes semantics we were
able to prove that the non-primitive combinators provided
by QuickChick are correct (i.e. sound and complete) with
respect to high-level predicates that capture their expected
behavior in an intuitive way. For instance the listOf
combinator, which given a generator G generates lists of
elements produced by G, has the following specification:
JlistOf GK ≡ {xs | ∀x ∈ xs, JGK x} (where ≡ denotes
extensional Ensemble equivalence).

Checkers Using the set of outcomes semantics for gen-
erators we can map checkers to propositions that capture
the conjecture that they test. Checkers are represented in-

1 October 17, 2014

https://github.com/zoep
http://prosecco.gforge.inria.fr/personal/hritcu/
http://www.maximedenes.fr/
http://www.cis.upenn.edu/~llamp/
http://www.cis.upenn.edu/~llamp/
http://www.cis.upenn.edu/~bcpierce/
https://github.com/QuickChick


VeriQuickChick

QuickChick

Property Checkers

Generators

Propositions

Predicates

Specifications

Propositions

Predicates

System Under Test

Implementation
Executable Definitions

Model
Declarative Definitions

semantics

sets of outcomes
semantics

equivalence

proofs

use use

equivalence

proofs

equivalence

proofs

use

te
st

use

informal
conjecture

expressed
as

trusts
top-le

vel
sp

ec
ifi

ca
tio

n

Figure 1: The proposed verification methodology

ternally as generators of test results, so they are also prob-
abilistic programs. This allows us to map each checker
to a set of outcomes and consequently to a logical propo-
sition by requesting all elements of its set of outcomes
to be successful testing results. Similarly to generators,
we use this semantics to prove correctness for checker
combinators by showing logical equivalence between the
proposition automatically derived from the semantics and
a proposition expressing the desired high-level specifica-
tion. One interesting example is the forAll combinator
that given a generator G and a Boolean predicate P tests
whether P holds for the outputs of G. The semantics of
this combinator is a proposition of the form

∀x ∈ JGK, P x = true

Experiments Beyond verifying a large part of
QuickChick itself, we applied our verification methodol-
ogy on a simple red-black trees example and on a com-
plex already existing infrastructure for testing noninter-
ference [4]. In all cases this required minimal changes
to the existing code. Our framework encourages the user
to structure the proofs in a compositional way, achiev-
ing modularity and thus more robust and scalable proofs.
Generally, the proofs closely follow the structure of the
code. The proofs for derived generators and checkers
only need to use the specifications of the combinators
they use, but they are independent of their concrete im-
plementations.

Future Work Verification in our framework is at the
moment a manual process, still we believe the sets of
outcomes abstraction is highly suitable for automatic ver-
ification, and we will explore that in the future. Beyond

finishing the noninterference case study we also plan to
apply our verification framework to testing other secu-
rity monitors [1]. We will also exploit automation in the
verification of the QuickChick combinators and reduce
the number of primitives that are given an axiomatic se-
mantics to the absolute minimum, turning QuickChick
into the first formally verified PBT framework. More
ambitiously, we would like to repeat this verification
while taking into account probabilities. Finally, we are
working on a language-based framework for producing
property-based generators, and we would like to use our
verification methodology to prove the correctness of that
framework.
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