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Computational reflection is a useful technique
for avoiding the overhead inherent in constructing
large proof objects. However, to date it is signifi-
cantly more time consuming to write reflective pro-
cedures than the equivalent tactics. Can we build
a lightweight tactic language for building reflective
procedures easily? To this end, we present Rtac,
a lightweight, work-in-progress, tactic language built
on top of MirrorCore, a parametric framework for
writing reflective decision procedures in Coq.

1 MirrorCore

MirrorCore provides a syntactic, simply-typed
lambda calculus which serves as a language to em-
bed the “interesting” symbols that our reflective pro-
cedures aim to reason about. In Coq, the syntactic
representation is the following:

(types) τ ::= τ1 → τ2|...
(expressions) e ::= e1e2|λτ.e‖x|dbe|?n

In the definition we use dbe to inject our special sym-
bols into the language and ?n to represent unifica-
tion variables. Both of which are important building
blocks as shown in MirrorShard [4].

The generality of the open definitions allows
MirrorCore to support meta-level polymorphic
and dependent types by including recursive and
parametrized constructors in the type algebra. For
example, we can reason about polymorphic lists by
including a constructor tyList : τ → τ and we can
support bit-vectors of constants sizes by including a
constructor tyBv : N → τ .

To make reflective procedures more generally ap-
plicable, we implement and verify them with respect
to extensional characterizations of the type algebra.
For example, if we require a representation of Props,
we parameterize them over a Typ0 record that con-
tains data relevant to the representation:

Class Typ0 : Type :=
{ typ0 : typ

; typ0_cast : typD typ0 = F

; typ0_match : ∀ (T : Type → Type) t,
T F → T (typD t) → T (typD t) }.

Along with appropriate reasoning principles.
The approach allows us a considerable amount of

flexibility when reusing existing automation in new
domains. For example, an entailment checker for ar-
bitrary separation logics can be applied both to a
logic specialized to Imp and a logic specialized to Java
as implemented in the Charge! framework [1].

2 Rtac
To ease the development of reflective procedures we
are experimenting building a small tactic language
modeled loosely on Ltac. To see an example, consider
the following simple goal.

∀x, ∀y, x→ y → x ∧ y

The current version of Rtac can solve this goal with
the following tactic.

Def tac : rtac :=
REPEAT INTRO ; APPLY and_intro ; ASSUMPTION.

Thm tac_sound : rtac_sound tac.

While a simple proof to construct, proving the tactics
sound in a compositional way has been difficult.

To explain more requires a little bit more detail
related to the representation and denotation of goals
and tactics. Tactics are functions from a context (rep-
resenting the “above the line” facts), a substitution
(representing the instantiation of unification variables
in the current context), and a MirrorCore expression
(representing the goal) to a result consisting of either
failure or a new substitution and a new goal which
implies the initial goal under the new substitution.

rtac ≡ goal→ option goal
(Goals) g ::= ∀τ.g|∃τ = e?.g|e→ g

|g1 ∧ g2|e|>
(Contexts) C ::= •|C∃τi|C∀τ |C e→

Ignoring the complexity of binding variables, goals
denote to propositions and contexts (along with their
substitutions) denote to functions from propositions
to propositions. The reason that the denotation of
a context requires a substitution is that the denota-
tion will add equations from the substitution next to
existentially quantified variables. For example, the
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denotation of universal and existential quantifiers in
the context are respectively:

JC∀τ, SKP ≡ JCK(∀x : JτK.P..)
JC∃τi, SKP ≡ JCK(∃xi : τi.xi = JS[i]K.. ∧ P..)

While the above definitions are the desired ones
from a global perspective, they are not strong enough
to prove theorems about applying tactics under
binders to side-by-side goals. The intuition for this is
best seen when thinking about the proof being con-
structed in the soundness theorem. When a tactic
succeeds in solving a goal, it is guaranteeing a proof
for any values of the environments that are consistent
with the substitution. To express this, we convert the
existential quantifiers into universal quantifiers and
move the implication into the context.

JC, S′Kp(P ′ → P )

This formulation almost gets us through the entire
proof. All that is left is expressing the fact that the
context can only grow monotonically by adding new
constraints, old constraints can not be removed or
contradicted. At first glace, this seems to be provable
by expressing the following fact:

∀P, JC, SKpP → JC, S′KpP

but this is too weak to allow popping out from under
a binder. To see the problem, consider the following
inconsistent context: ∀x : N,∀y : ∅. With this envi-
ronment, Coq permits two ways to prove the above
theorem

∀P, (∀x : N,∀y : ∅, P )→ (∀x : N,∀y : ∅, P )

The obvious (and good) proof is the identity function.
The “bad” one matches on the x : ∅. We think of this
one as bad because it uses “deeper” information to
prove a “shallower” property; i.e. it uses ∅ to avoid
constructing a function to thread x through the proof.

This type of problem is usually solved by syntac-
tic methods, which essentially require constraints to
match up point-wise, but the semantic formulation
of MirrorCore seems to make these overly restrictive.
More semantic methods rely on parametricity effec-
tively requiring the above proof to hold for any types
(as long as they are replaced consistently). These
approaches are similar in spirit to PHOAS [2] and
logical relations [3] and likely related, in some way,
to extensional type theories since one can view Coq
as the meta-logic for MirrorCore.

Our current solution side-steps the problem by re-
quiring a transport proof at every new quantifier.
Since the proofs are not manifest during execution,
this should not affect performance of running tactics.

3 Future Work

While MirrorCore is mostly stable at this point, Rtac
is still in a state of flux. The proofs have been proven
more subtle than initially anticipated but the defini-
tions described above are promising and the proofs
are very near completion.

Besides proofs, performance has been a difficult
thing to control. vm compute is essential for mak-
ing things fast, but it still seems like low-level imple-
mentation details can drastically affect performance,
especially spurious matches. It is possible that man-
ual optimization via cps-conversion would be help-
ful, but it further complicates proofs. I am opti-
mistic that Denes’ work on refinement, proofs, and
native_compute could further assist in achieving
performance while controlling complexity.
native_compute however may be too general pur-

pose. In computational reflection, there are often two
properties that make evaluation simple. First, terms
are closed. Only the denotation function which is
not given to the reflective procedure mentions quan-
tified terms. And second, the majority of the code
is known statically and could potentially be assem-
bled and optimized ahead-of-time for maximum per-
formance. Combining this optimized binary with a
font-end that could read the raw kernel representa-
tion and translate it into values could be a way to
achieve ACL2-like automation at native performance
while sacrificing relatively little in terms of sound-
ness, especially in the light of current developments
on verified Coq compilers.
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